
砍掉99%采样成本!腾讯AI Lab提出大模型无监督训练新技术
砍掉99%采样成本!腾讯AI Lab提出大模型无监督训练新技术只要微调模型生成的前8-32个词,就能让大模型推理能力达到和传统监督训练一样的水平?
只要微调模型生成的前8-32个词,就能让大模型推理能力达到和传统监督训练一样的水平?
在 ICLR 2025 中,来自南洋理工大学 S-Lab、上海 AI Lab、北京大学以及香港大学的研究者提出的基于 Flow Matching 技术的全新 3D 生成框架 GaussianAnything,针对现有问题引入了一种交互式的点云结构化潜空间,实现了可扩展的、高质量的 3D 生成,并支持几何-纹理解耦生成与可控编辑能力。
回顾 AGI 的爆发,从最初的 pre-training (model/data) scaling,到 post-training (SFT/RLHF) scaling,再到 reasoning (RL) scaling,找到正确的 scaling 维度始终是问题的本质。
与3D物理环境交互、适应不同机器人形态并执行复杂任务的通用操作策略,一直是机器人领域的长期追求。
DeepSeek R1 催化了 reasoning model 的竞争:在过去的一个月里,头部 AI labs 已经发布了三个 SOTA reasoning models:OpenAI 的 o3-mini 和deep research, xAI 的 Grok 3 和 Anthropic 的 Claude 3.7 Sonnet。
Karpathy发出灵魂拷问,评估AI究竟该看哪些指标?答案或许就藏在经典游戏里!最近,加州大学圣迭戈分校Hao AI Lab用超级马里奥等评测AI智能体,Claude 3.7结果令人瞠目结舌。
近日,上海 AI Lab 具身智能中心研究团队在机器人控制领域取得了最新突破,提出的 HoST(Humanoid Standing-up Control)算法,成功让人形机器人在多种复杂环境中实现了自主站起,并展现出强大的抗干扰能力。
Llama都在用的RoPE(旋转位置嵌入)被扩展到视频领域,长视频理解和检索更强了。
传统的偏好对⻬⽅法,如基于⼈类反馈的强化学习(RLHF)和直接偏好优化(DPO),依赖于训练过程中的模型参数更新,但在⾯对不断变化的数据和需求时,缺乏⾜够的灵活性来适应这些变化。
由港科广、中南、西湖大学、UIUC、新加坡国立大学、上海 AI Lab、宾夕法尼亚大学等团队联合发布的首篇聚焦医疗领域具身智能的综述论文《A Survey of Embodied AI in Healthcare: Techniques, Applications, and Opportunities》正式上线,中南大学刘艺灏为第一作者